Get all the latest magnetic news, resources and success stories right in your inbox:
Filter by category:
Function and application influence design choices. The balance between power and cost efficiency, for example, is a tough line to walk. So for many, the basic design elements of the Halbach Arrays and its analogues are of vital consideration. In this third article of our four-part series on Halbach Arrays, we will discuss design elements and variables.
The term Halbach Array is ubiquitous. It’s liberally applied in a generic sense when an array has an arrangement of magnets where the orientation has a rotational iteration. Most Planar Magnet Arrays, which use this technique, incorporate a 90° orientation directional change from magnet element to magnet element. It is common to introducing magnets with orientations other than the pole facing the work-piece (in this case horizontal). These horizontally orientated magnets are referred to as “Bucking Magnets.”
So, when an array design makes use of “Bucking Magnets”, the array may or may not be a Classical Halbach Array; however, most will still refer to the array as a Halbach Array.
There are several styles of Halbach Arrays or arrays which make use of “Bucking Magnets” The most accessible online depictions show arrays using a 90° orientation change between magnet elements, but there are many more available.
A 90° difference between array elements is somewhat “coarse”, and using more array elements with small angles will more closely approximate a true circumferential orientation.
The figure to the right uses 45° angles between the magnets. This is closer to circumferential orientation and improves the efficiency of the system.
It is unknown whether or not the extra effort in using the finer resolution is beneficial.
Typically, the higher the number of elements utilized, the finer the angular resolution, resulting in a more homogenous and stronger the field output will be.
However, there is a point of diminishing returns where the manufacturing difficulties outweigh the magnetic field benefit.
As with most magnetic circuits, a designer balances the need of the application with cost. A Halbach Array adds cost, but it also can reduce the required magnet mass while increasing performance.
We know that design, utility, and external variables are inextricably connected in many applications. Halbach Arrays are no different. In our upcoming final piece of this four-part series on Halbach Arrays, we will discuss when it’s most prudent to use a Halbach Array, including some key benefits and drawbacks to its use and implementation.
There is a time and place to use Halbach Arrays over conventional arrays. Depending on your needs, the time and cost involved in manufacturing Halbach Arrays may or may not be worth the investment. This final piece in our four part series on Halbach Arrays discusses the benefits and drawbacks to using these arrays.
In our previous TechTalk article about Halbach Arrays, we discussed what a Halbach Array might be composed of and why these arrays are useful. But how do these arrays create a magnetic field, and how are these fields used?
In this second installment of our four-part series explaining Halbach Arrays, we will look at the field geometries of the two most common Halbach Array orientations and debunk a few common misconceptions about how these magnetic fields are used and function.
There is a lot of information about “Halbach Arrays” available on the Internet, yet much of it is re-posted copy with fragmented explanations. This first article in a four-part series on Halbach Arrays will attempt to cohesively demystify the Halbach Array, explain how it works, and cover the advantages and disadvantages of using them.