TechTalk: Industry News

Get all the latest magnetic news, resources and success stories right in your inbox:

Filter by category:

OR

Search for keywords:


Magnet Shorthand: Are Neo Magnets and NdFeB Magnets the Same?

We occasionally get inquiries and manufacturing prints identifying a custom magnet shape using the abbreviation Neo. Because shorthand works – both internally and in discussions with our customers – we likewise sometimes refer to a Neodymium magnet as Neo or NdFeB. Of the rare earth element magnets, Neo magnets are the most commonly specified because they have the highest known energy product for their mass. One might possibly expect the Neo name to mean “new” – and that could be a reasonable assumption based on the fact that they were initially created relatively recently in 1984. The abbreviated name, however, actually comes from the element Neodymium – or Nd.

Read more

How Are Halbach Arrays Designed?

Function and application influence design choices. The balance between power and cost efficiency, for example, is a tough line to walk. So for many, the basic design elements of the Halbach Arrays and its analogues are of vital consideration. In this third article of our four-part series on Halbach Arrays, we will discuss design elements and variables.

Read more

What Is a Rare Earth Magnet and Do Samarium Cobalt and Neodymium Identify as Such?

There are seventeen rare earth elements– fifteen of which are lanthanides and two of which are transition metals, yttrium and scandium, that are found with lanthanides and are chemically similar. In general, rare earth elements were given their name for two different, yet significant reasons.

Read more

How a Circular Halbach Array Works in Circumferential and Planar Arrays

In our previous TechTalk article about Halbach Arrays, we discussed what a Halbach Array might be composed of and why these arrays are useful. But how do these arrays create a magnetic field, and how are these fields used?

In this second installment of our four-part series explaining Halbach Arrays, we will look at the field geometries of the two most common Halbach Array orientations and debunk a few common misconceptions about how these magnetic fields are used and function.

Read more

Using Magnets Instead of Fasteners or Welding as a Means of Joining Parts

Who out there hasn’t been faced with an application that requires parts to be joined or connected together? Sometimes the connection requirement is only temporary and we’ll reach for clamps because they are quick and easy to use. In other instances when we need something more secure, we would think to use a mechanical fastener because screws are reliable and inexpensive. Welding is a good choice when the joint needs to be strong and more permanent. However, there are drawbacks to all of these options. However, there are drawbacks to all of these options. Clamps can be cumbersome, and mechanical fasteners require advanced planning for drilling and location mounting holes. The strength and permanency of welding can also become its biggest downside because once something is welded in place, it cannot be easily changed or adapted. The simple solution to these problems may be to use magnetic assemblies, which are produced in a variety of shapes and sizes…

Read more

Halbach Arrays: Halbach Array Applications, Function and Materials Explained

There is a lot of information about “Halbach Arrays” available on the Internet, yet much of it is re-posted copy with fragmented explanations. This first article in a four-part series on Halbach Arrays will attempt to cohesively demystify the Halbach Array, explain how it works, and cover the advantages and disadvantages of using them.

Read more

As9100c Certification Gives Dura Magnetics Deeper Entry Into the Aerospace Industry

In an ongoing effort to maintain leadership as a magnetic solution provider, we recently earned our certification in AS9100C Aerospace Management Systems. This certification takes ISO 9001 to the next level – requiring an even greater degree of quality and rigor to receive. Our certificate can be found here: AS9100D Certificate.

Read more

Does Temperature Affect the Strength of a Magnet?

The maximum operating temperature of a magnet is an important property, but it is simply the point beyond which the magnet will experience an irreversible loss in net magnetization. In actuality, a magnet will lose net magnetization as soon as it starts to heat up. This loss is called “reversible” as it is recovered as soon as the magnet cools back down. While avoiding irreversible loss may seem to be the primary concern, even reversible loss can cause a negative impact on a magnet’s performance because while the magnet does not permanently demagnetize, it may not generate enough field for a given application at a particular operating temperature.

Read more

How Air Gaps, Workpiece Conditions, and Operating Temperature Affect Magnetic Pull Force

In sizing and selecting magnets and custom magnetic assemblies, it is important to ask a number of questions about the working area in which the magnet will operate. The answers to these questions help deliver a higher level of success in providing a magnet that meets the fit, form, and function of the application. Three areas of concern that we’ll address are: air gap relative to holding force, workpiece conditions, and operating temperature. All of these represent important conditions for the magnet’s ultimate performance…

Read more

Magnetic Component Design: Magnet Feature Optimization for Manufacturability Improvements

Designers and engineers that need to incorporate a magnet into their application are not often aware of the mechanical characteristics of magnetic alloys. Features that are commonly specified and produced on materials such as mild steel, stainless steel, aluminum, or brass can be very difficult to produce on a magnet or incorporated into magnet assemblies…

Read more